Search results for "Polarity in embryogenesis"

showing 4 items of 4 documents

An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains …

2017

In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs…

0301 basic medicineEmbryologyPolarity in embryogenesislcsh:MedicineGene ExpressionMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)medicine.disease_causeBiochemistryTubulinGene expressionElectron MicroscopyTransgeneslcsh:SciencePromoter Regions GeneticSea urchinConserved SequenceSequence DeletionGeneticsRegulation of gene expressionMicroscopyMutationMultidisciplinaryMedicine (all)Gene Expression Regulation DevelopmentalGenomicsAnimal ModelsTATA BoxEnzymesEnhancer Elements GeneticExperimental Organism Systemsembryonic structuresParacentrotusTranscription Initiation SiteOxidoreductasesLuciferaseResearch ArticleEchinodermsTranscriptional ActivationImaging TechniquesNeurogenesisGreen Fluorescent ProteinsEmbryonic DevelopmentSettore BIO/11 - Biologia MolecolareBiologyResearch and Analysis MethodsGenome ComplexityParacentrotus lividus03 medical and health sciencesSpecies SpecificityTubulinsbiology.animalFluorescence ImagingGeneticsmedicineConsensus sequenceAnimalsCiliaEnhancerBiochemistry Genetics and Molecular Biology (all)Binding SitesModels Geneticlcsh:REmbryosOrganismsBiology and Life SciencesComputational BiologyProteinsbiology.organism_classificationInvertebratesIntronsCytoskeletal Proteins030104 developmental biologyAgricultural and Biological Sciences (all)Bright Field ImagingSea UrchinsEnzymologyMutagenesis Site-Directedlcsh:QTransmission Electron MicroscopyDevelopmental BiologyTranscription FactorsPLOS ONE
researchProduct

On the Establishment of Polarity in Polychaete Eggs

1990

The study of Spiralian development began about a hundred years ago when Whitman (1878) published a description of the development of the leech, Clepsine marginata. Subsequently, Spiralian development became popular because the developmental fate of each individual blastomere can be determined precisely from the cell lineage. About the turn of the century several extensive papers describing the cell lineages of various molluscs (e.g. Blochmann, 1881, 1883; Kofoid, 1895; Conklin, 1897; Wierzejski 1905) and annelids (e.g. Wilson, 1892; Mead, 1897; Woltereck, 1904) appeared. From these studies it became clear that the general principles of mollusc and annelid development (and to a much lesser d…

MesodermAnnelidmedicine.anatomical_structurebiologyEvolutionary biologyPolarity in embryogenesisVentral nerve cordmedicineEmbryoEctodermBlastomerebiology.organism_classificationCleavage (embryo)
researchProduct

Quantitative analysis of cellular differentiation during early embryogenesis ofPlatynereis dumerilii.

1990

As in many spiralian embryos with unequal cleavage, cleavage inPlatynereis follows an invariant pattern. Preceding each cleavage the cytoplasm is reorganized, allowing the spiral cleavage mode to produce cells with different cytoplasmic composition. The fertilized egg undergoes a dramatic ooplasmic segregation after the completion of the cortical reaction. As a consequence, a plug of clear cytoplasm becomes located at the animal pole. Once the four quadrants of the embryo have been established, the cleavage sequence of the D quadrant differs clearly from that of the other three quadrants. The results presented here suggest that differential distribution of the clear cytoplasm governs this s…

Mesodermanimal structuresPolarity in embryogenesisCellular differentiationEctodermEmbryoAnatomyBiologyCleavage (embryo)Cell biologymedicine.anatomical_structureCytoplasmembryonic structuresGeneticsmedicineDevelopmental biologyDevelopmental BiologyRoux's archives of developmental biology : the official organ of the EDBO
researchProduct

Spatially restricted expression of PlOtp, a Paracentrotus lividus Orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and…

1999

ABSTRACT Several homeobox genes are expressed in the sea urchin embryo but their roles in development have yet to be elucidated. Of particular interest are homologues of homeobox genes that in mouse and Drosophila are involved in patterning the developing central nervous system (CNS). Here, we report the cloning of an orthopedia (Otp)-related gene from Paracentrotus lividus, PlOtp. Otp is a single copy zygotic gene that presents a unique and highly restricted expression pattern. Transcripts were first detected at the mid-gastrula stage in two pairs of oral ectoderm cells located in a ventrolateral position, overlying primary mesenchyme cell (PMC) clusters. Increases in both transcript abund…

animal structuresDNA ComplementaryStomodeumBody PatterningPolarity in embryogenesisCell specificationCleavage Stage OvumMolecular Sequence DataGene DosageGene ExpressionSettore BIO/11 - Biologia MolecolareEctodermNerve Tissue ProteinsParacentrotus lividusGene expressionEctodermmedicineAnimalsDrosophila ProteinsAmino Acid SequenceCloning MolecularMolecular BiologyBody PatterningGeneticsHomeodomain ProteinsbiologyBase SequenceGenes HomeoboxOrthopediaSequence Analysis DNAbiology.organism_classificationCell biologymedicine.anatomical_structureEctopic expressionParacentrotus lividusSea UrchinsSpiculogenesisSettore BIO/03 - Botanica Ambientale E Applicataembryonic structuresHomeoboxEctopic expressionDevelopmental Biology
researchProduct